
Random Thoughts on Usability,
Understandability, Programmability

Salman Habib
HEP and MCS Divisions
Argonne National Laboratory

Architectural Challenges are Real*

Mira/Sequoia

Roadrunner:
Prototype for
modern
accelerated
architectures,
first to break
the PFlops
barrier

 Architectural ‘Features’
• Complex heterogeneous nodes
• Simpler cores, lower memory/core, no real cache
• Skewed compute/communication balance
• Programming models?
• I/O? File systems?
• Effect on code longevity

HACC team meets Roadrunner

*in case there’s any
doubt in people’s minds —

Supercomputing: System Evolution

• HPC	imbalances	(somewhat	independent	of	heterogeneity)	
‣ HPC systems were meant to be balanced under certain metrics —

nominal scores of unity (1990’s desiderata)
‣ These metrics now range from ~0.1 to ~0.001 on the same system

currently and are getting worse (out of balance systems)
‣ RAM is expensive: memory bytes will not scale like compute flops, era of

weak scaling (fixed relative problem size) has ended (at least for now)
• Challenges	

‣ Strong scaling regime (fixed absolute problem size) is much harder than
weak scaling (since metric really is ‘performance’ and not ‘scaling’)

‣ Machine models are complicated (multiple hierarchies of compute/
memory/network) — heterogeneity!

‣ Applications action items: add more physics to use available compute,
adds more complexity — may make the locality problem worse

‣ Portability across architecture choices must be addressed (programming
models, algorithmic choices, heterogeneity, trade-offs, etc.), “hard” vs.
“soft” portability

Co-Design vs. Code Design

• HPC	‘Dreams/Myths’	
‣ The magic compiler/programming model/language/ —
‣ Co-Design (historically too perturbative, can this change?)

• Dealing	with	Today’s	Reality	(Defensive	Code	Design)	
‣ Code teams must understand all levels of the system architecture, but not

be enslaved by it (software cycles are long)!
‣ Must have a good idea of the ‘boundary conditions’ (what may be

available, what is doable, etc.)
‣ ‘Code Ports’ is ultimately a false notion, need an architecture-aware code

design philosophy and a helpful programming environment (rich/
interactive “decoration/pragmas?”)

‣ Special-purpose (domain-specific) hardware, some small(er) teams are
looking at such options, hard to imagine this as a community solution

‣ Need to start thinking out of the box — domain scientists and computer
scientists and engineers must work together

Handling the Transition —

• Codes	and	Teams	
‣ Most codes are written and maintained by small teams working near the

limits of their capability (no free cycles)
‣ Community codes, by definition, are associated with large inertia (not

easy to change standards, untangle lower-level pieces of code from
higher-level organization, find the people required that have the
expertise, etc.)

‣ Lack of consistent programming model for “scale-up”: major issue
‣ Role of higher level languages: Python, R, —

• Use	Cases	and	Timelines	
‣ Transitions needs to be staged (not enough manpower to entirely

rewrite code base)
‣ Prediction: There will be no ready made solutions, sad but likely true
‣ Major problems for data-intensive applications (not used to designing

for performance or caring about it)
‣ Software cycles vs. hardware cycles (hard to predict precisely)
‣ HPC systems are fragile, and this is getting to be more of a problem

Exascale Review Recap

CM-200

CM-5

T3-D T3-E

XT-4

O2000
SP-2

Roadrunner

BG/Q

Dataplex

ASCI ‘Q’

XK-7

XE-6

XC-30

BG/P

Cori (KNL)Theta (KNL)
Cooley

(CPU/GPU)

• System	EvoluGon	
‣ Usability has

gotten worse over
time

‣ Programmability
has gotten worse

‣ Understandability
has gotten worse

‣ How much
worse can it
get?

‣ Exascale
requirements
review provided
useful insights

• General	consensus	from	computaGonally	experienced	‘power’	teams	
‣ Common tools across architectures, efficient parallel primitives (can be opaque)
‣ Should possess flexible data layouts to better handle memory hierarchies
‣ Potentially replacable with hand-tuned code

